卡尔曼滤波与PID算法之自平衡小车

首先确定一下我们的目标是什么?我们得让车站起来,小车整个身体只有电机可以控制轮子,自然对小车的控制就落在了对电机的控制上。很多参加比赛的朋友由于车模是组委会发的,没去想过什么样的电机是合适的? 自然启动会快,反映越快的直流电机最合适。对于直流电机的控制调速,大家都知道最常用的是脉宽调制即PWM方式,这时候就得选好电机驱动芯片了,跟你的电机匹配,电流要扛的住。再一个,把小车想成一个骑独轮车的杂技演员,维持平衡,你的保证能前后转吧,所以驱动得做成H桥型的。总结一下我们第一个目标就是做好驱动电路,可以实现对电机的正反两个方向的大概调速控制(注意是大概,无反馈调节,如果想试试PID也可以先做一下速度反馈调节)。

 

下一个问题,稍微有点控制思想的就应该明白,小车是自平衡,自然是自己在控制,那它控制的依据是什么?根据什么去控制?对于两轮小车当它倒下去的时候,只有一个维度的两个量,那就是和直立位置的角度值和在倒下去的时候的快慢值(角速度),其实他俩是一个量,因为对角速度积分就是角度值。角速度只是反映了倒下去的快慢。即变化量。好比你拿一根筷子直立在手指上,你看见它要倒下去的时候肯定手会跟着移动,你一方面看到的是筷子倒下去的角度,另一个是筷子倒的时候的快慢,角度大速度快你自然移动的快,幅度也大,角度小速度慢,你自然移动的慢幅度也小。以上纯脑袋想的,从科学的严谨性来说,还是去看卓老大的文档,从建立数学模型,到自控原理的计算分析最后得出来。所以第二个目标出来了,我们要去实时测出小车偏离直立位置的角度,这个其实是自平衡小车的第一个难点。

 

我们说测角度一般使用加速度计就可以了,加速度计是分为模拟的和数字的两种,都是可以用的,只是在实际情况中,加速度计测量的角度是不准确的,因为在小车运动过程中存在震动加速度,这会使输出值不准确,不能真实反映小车的偏转角度。这是器件本身的问题,有些人说用简单的数字滤波(中值、均值等),这些滤波是滤除的干扰信号,这本身的错误信号怎么虑出?再来考虑另一个器件 陀螺仪,我们知道陀螺仪是测量角速度的,但是角速度转换为角度是需要一个积分过程,假如在输入时有一个极小的误差,那么随着积分这个误差将会越来越大,最后得出的角度自然也是不准确的。(器件的使用是最基本的,希望大家能把这两个传感器的使用先搞明白,明白角度具体是怎么计算出来的?)这个时候才有我们常说的卡尔曼滤波、互补滤波的登场,很多人在制作过程中总是觉得卡尔曼或者互补滤波很高端的东西,视线全被它们蒙蔽了,实际上它们最终的目的任然是得到最准确的角度偏离值。对于这一目标,传感器的性能、电路设计同样是很重要的。至于卡尔曼滤波和互补滤波的优劣不在这讨论,我们只说说用的较多的卡尔曼滤波,卡尔曼的前世今生大家在网上搜一下,千篇一律,没一个说到点上了的。其实作为应用我们只需知道卡尔曼输入的两个量,一个是测量值,一个是预测值,程序都是成型的,重点还是在参数的调试上。整个算法中影响输出的就是Kg的值,可以简单的理解为一种加权行为,相信谁更多一点而已。

 

代码如下:

volatile float QingJiao = 0;  //最终准确角度输出变量定义

 

volatile float Gyro_Data = 0; //陀螺仪

 

float Q =1,R =3900;   //调整卡尔曼的滞后 3900  

 

static float RealData = 0,RealData_P =10000;

 

float NowData = 0,NowData_P =0 ;

 

float Kg = 0,gyroscope_rate = 0,gyroscope_rat = 0,accelerometer_angle;

 

volatile float gyroscope_angle=0    ;                                 //用卡尔曼滤波时不用此变量

 

int  Gyro1_zero=0;

void kalman_update(void)

{

 

  if(zeroflag>1000)                          //与开机自检有关,没用到的可以删去

 

          

 

  {      zeroflag=1001;                           //确保zeroflag不会溢出

 

//-------------------------------------------------------------------------------------------------------------------------------

 

        Acc_z = Acc_z - 28850;     //加速度计采集的AD值减去直立时的输出值

 

            Gyro1_zero=zerosub/1000;  //陀螺仪开机自检累加1000次后取均值 得到陀螺仪零偏值

            Gyro1  = Gyro1  - Gyro1_zero;          //陀螺仪AD采集值减去陀螺仪零偏值      

            Gyro_Data = Gyro1;           

  accelerometer_angle=   Acc_z*180/(47915.71-12843.7);   //加速度计计算出的角度 归一化到-90 到+90

    gyroscope_rate = Gyro1*0.0235*0.005;  //0.0235 是转换角度的比例值 0.005是控制周期

 

    gyroscope_rat =gyroscope_rat -Gyro1*0.0235*0.005;    //积分角速度得到角度

 

//卡尔曼五个公式的算法实现                                                    

 

   NowData = RealData -gyroscope_rate;

 

   NowData_P = Q+RealData_P;

 

   Kg = NowData_P/(NowData_P+R);

 

   RealData = NowData + Kg*(accelerometer_angle - NowData);

 

   RealData_P = (1-Kg)*NowData_P;

 

     QingJiao =  RealData;   //将准确角度结果给QingJiao

 

    }

}

 整个调试过程有三个参数需要调整,Q  R  及那个0.0235 。具体的调试这个真是说不清楚,往往算法的调试都是经验,尝试多了就有规律了。个人感觉做到这,就得用去三分之二时间。

 

   好了,假如你已经得到准确角度,自然是开始以此作为控制量,那我们要控制成啥样?想一想也知道是要把这个角度值控制成0度(我自己将直立时定义为0度),那么自然使用常用的PID算法,偏差自然就是QingJiao-0=QingJiao,当然你可以反过来,这其实根据你自己对方向的定义。我们来个最简单的位置式PD算法:

 

fValue = (float) P *QingJiao -(float) D*Gyro_Data;    

 

P就是PID的P参数 D就是PID的D参数,QingJiao反映幅度,Gyro_Data反映快慢。这也是需要不断调试出来的。再把fvalue值给PWM输出就可以了。实际在做的时候,往往没那么简单,所以一定要一步一步做好之后再做后面的,假如你第二部没做好,在第三部时你怎么也直立不起来,你不知道到底是PD参数不对,还是卡尔曼出来的角度本身不准。所以个人感觉,得到准确角度是整个过程至关重要的一步。小车的直立是一直是一个动态过程,即使最好的状态一动不动,也是在动态控制中,只是看不出而已。

 

以上只针对直立控制,即最基本的自平衡。

展开阅读全文

没有更多推荐了,返回首页

应支付0元
点击重新获取
扫码支付

支付成功即可阅读